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 1. Introduction 

Industries  require to transport their products available at 

several sources or production centres to a number of 

destinations or markets. In the process of distributing to various 

destinations, high transportation costs are involved. 

Minimizing the transportation cost will benefit the organisation 

by increasing the profit. To analyse and minimize the cost of 

transportation, transportation model is used.  The name 

“transportation model” is, however, misleading. This model 

can be used for a wide variety of situations such as scheduling, 

personnel assignment, product mix problems and many others, 

so that the model is really not confined to transportation or 

distribution only. 

The origin of transportation models dates back to 1941 when 

F.L. Hitchcock presented a study entitled ‘The Distribution of 

a Product from Several Sources to Numerous Localities’. The 

presentation is regarded as the first important contribution to 

the solution of transportation problems. In 1947, T.C. 

Koopmans presented a study called ‘Optimum Utilization of 

the Transportation System’. These two contributions are 

mainly responsible for the development of transportation 

models which involve a number of production centres / sources 

and a number of destinations / markets. Each shipping source 

has a certain capacity and each destination has a certain 

requirement associated with a certain cost of transportation 

from the sources to the destinations. The objective is to 

minimize the cost of transportation while meeting the 

requirements at the destinations. Transportation problems may 



also involve movement of a product from plants to warehouses, 

warehouses to wholesalers, wholesalers to retailers, retailers to 

customers, etc. 

 2. Assumptions in the Transportation Model 

1. Total quantity of the items available at different sources/ 

supply is equal to the total requirement/ demand at 

different destinations / markets. 

2. Items can be transported conveniently from all sources to 

destinations. 

3. The unit transportation cost of the item from all sources 

to destinations is known. 

4. The transportation cost on a given route is directly 

proportional to the number of units shipped on that route. 

5. The objective is to minimize the total transportation cost 

for the organization as a whole and not for individual 

supply and distribution centres. 

3. Definition of the Transportation Model 

Suppose that there are m sources and n destinations. Let ai be 

the number of supply units available at source i(i = 1,2,3,….., 

m) and let bj be the number of demand units required at 

destination j(j = 1,2,3,….., n). Let cij represent the unit 

transportation cost for transporting the units from source i to 

destination j. The objective is to determine the number of units 

to be transported from source i to destination j so that the total 

transportation cost is minimum. In addition, the supply limits 

at the sources and the demand requirements at the destinations 

must be satisfied exactly. 



If xij (xij ≥ 0) is the number of units shipped from source i to 

destination j, then the equivalent linear programming model 

will be 

 Find xij (i =1,2,3, ……… , m ;  j = 1,2,3,……… , n) in order 

to 

minimize      

                     m   n                  

             z =   Σ    Σ   cij xij , 

                    i =1    j = 1     

subject to 

          n                    

              Σ   xij  = ai ,   i = 1,2,3, …….. , m , 

 j = 1     

 and 

               m                 

              Σ  x ij  = bj ,   j = 1,2,3, …….. , n , 

             i= 1
 

where    x ij ≥ 0 

The two sets of constraints will be consistent i.e., the system 

will be in balance if 

                     m               n                      

                    Σ  ai  =     Σ  bj   . 

       i =1            j = 1     



Equality sign of the constraints causes one of the constraints to 

be redundant (and hence it can be deleted) so that the problem 

will have (m + n - 1) constraints and (m x n ) unknowns. 

 Note that a transportation problem will have a feasible solution 

only if the above restriction is satisfied. Thus, 

                     m               n                      

                    Σ  ai  =    Σ  bj   is necessary as well as a sufficient 

condition for a 

       i =1          j = 1     

transportation problem to have a feasible solution. Problems 

that satisfy this condition are called balanced transportation 

problems. Techniques have been developed for solving 

balanced or standard transportation problems only. It follows 

that any non – standard problem in which the supplies and 

demands do not balance, must be converted to a standard 

transportation problem before it can be solved. This conversion 

can be achieved by the use of a dummy source/destination. 

The above information can be put in the form of a general 

matrix shown below: 



 

In table , cij  , i = 1,2, ….., m ;  j = 1,2, …… , n , is the unit 

shipping cost from the ith oringin to jth destination, xij is the 

quantity shipped from the ith origin to jth destination, ai  is the 

supply available at origin i and bj is the demand at destination 

j. 

 Definitions: 

 A few terms used in connection with transportation models are 

defined below. 

1.  Feasible solution: A feasible solution to a 

transportation problem is a set of non-negative 

allocations, xij that satisfies the rim (row and 

column) restrictions. 



2.  Basic feasible solution: A feasible solution to a 

transportation problem is said to be a basic feasible 

solution if it contains no more than m + n – 1 non – 

negative allocations, where m is the number of rows 

and n is the number of columns of the transportation 

problem. 

3. Optimal solution: A feasible solution (not 

necessarily basic) that minimizes (maximizes) the 

transportation cost (profit) is called an optimal 

solution. 

4.  Non -degenerate basic feasible solution: A basic 

feasible solution to a (m x n) transportation problem 

is said to be non – degenerate if, 

1.  the total number of non-negative 
allocations is exactly m + n – 1 (i.e., 
number of independent constraint 
equations), and 

2. these m + n – 1 allocations are in 
independent positions. 

5. Degenerate basic feasible solution: A basic feasible 
solution in which the total number of non-negative 
allocations is less than m + n – 1 is called 
degenerate basic feasible solution. 

4. Matrix Terminology 

 The matrix used in the transportation models consists of 

squares called ‘cells’, which when stacked form ‘columns’ 

vertically and ‘rows’ horizontally. 

 The cell located at the intersection of a row and column is 

designated by its row and column headings. Thus the cell 



located at the intersection of row A and column 3 is called cell 

(A, 3). Unit costs are placed in each cell. 

   

5. Degeneracy in Transportation Problem 

In case of simplex algorithm, the basic feasible solution may 

become degenerate at the initial stage or at some intermediate 

stage of computation. In a transportation problem with m 

origins and n destinations if a basic feasible solution has less 

than m + n – 1 allocations (occupied cells), the problem is said 

to be a degenerate transportation problem. 

While in the simplex method degeneracy does not cause any 

serious difficulty, it can cause computational problem in 

transportation technique. In stepping – stone method it will not 

be possible to make close paths (loops) for each and every 

vacant cell and hence evaluations of all the vacant cells cannot 

be calculated. If modified distribution method is applied, it will 

not be possible to find all the dual variables ui and vj since the 

number of allocated cells and their cij values is not enough. It is 

thus necessary to identify a degenerate transportation problem 

and take appropriate steps to avoid computational difficulty. 

Degeneracy can occur in the initial solution or during some 

subsequent iteration. 

 5.1. Degeneracy in the initial solution 



Normally, while finding the initial solution (by any of the 

methods), any allocation made either satisfies supply or 

demand, but not both. If, however, both supply and demand are 

satisfied simultaneously, a row as well as column are cancelled 

simultaneously and the number of allocations become two less 

than m + n – 1 and so on.  This degeneracy is resolved or the 

above degenerate solution is made non-degenerate in the 

following manner: 

First of all the requisite number of vacant cells with least unit 

costs are chosen so that (incase of tie choose arbitrarily): 

1. these cells plus the existing number of allocations 

are equal to m + n – 1. 

2. these  m + n – 1 cells are in independent positions 

i.e., no closed path (loop) can be formed among 

them. If a loop is formed the cells / cells with next 

lower cost is/are chosen so that no loop is formed 

among them. This can always be done if the 

solution we start with contains allocated cells in 

independent positions. 

Now allocate an infinitesimally small but positive value ε 

(Greek letter epsilon) to each of the chosen cells. Subscripts are 

used when more than one such letter is required (e.g., ε1, ε2, 

etc.) these ε’s are then treated like any other positive basic 

variable and are kept in the transportation array (matrix) until 

temporary degeneracy is removed or until the optimal solution 

is reached, whichever occurs first. At that point we set each ε = 

0. Notice that ε is infinitesimally small and hence its effect can 

be neglected when it is added to or subtracted from a positive 

value (e.g. 10 + ε = 10, 5 – ε = 5, ε + ε = 2 ε , ε  - ε  = 0). 

Consequently, they do not appreciably alter the physical nature 



of the original set of allocations but do help in carrying our 

further computations such as optimality test. 

 5.2. Degeneracy during some subsequent iteration 

Sometimes even if the starting feasible solution is non-

degenerate, degeneracy may develop later at some subsequent 

iteration. This happens when the selection of the entering 

variable (least value in the closed path that has been assigned a 

negative sign), causes two or more current basic variables 

(allocated cell values) to become zero. In thils case we allocate 

ε to recently vacated cell with least cost that there are exactly 

m + n – 1 allocated cells in independent positions and the 

procedure can then be continued in the usual manner. 

6. Transportation Algorithm 

 Transportation algorithm for a minimization problem as 

discussed earlier can be summarized in the following steps: 

1. Construct the transportation matrix. For this enter the 

supply ai from the origins, demand bj at the destinations 

and the unit costs cij in the various cells. 

2. Find initial basic feasible solution by Vogel’s 

approximation method or any of the other given 

methods. 

3. Perform optimally test using modified distribution 

method. For this, find dual variables ui and vj such that 

ui + vj = cij for occupied cells. Starting with 

say,        vi = 0, all other variables can be evaluated. 

4. Compute the cell evaluations = cij – (ui + vj) for vacant 

cells. If all cell evaluations are positive or zero, the 

current basic feasible solution is optimal. In case any 



cell evaluation in negative, the current solution is not 

optimal. 

5. Select the vacant cell with the most negative 

evaluation. This is called identified cell. 

6. Make as much allocation in the identified cell as 

possible so that it becomes basic i.e., Reallocate the 

maximum possible number of units to these cells, 

keeping in mind the rim conditions. This will make 

allocation in one basic cell zero and in other basic cells 

the allocations will remain non-negative ( ≥ 0). The 

basic cell whose allocation becomes zero will leave the 

basis. 

7. Return to step 3, repeat the process till optimal solution 

is obtained. 

7. Variants in Transportation Problems 

 The following variations in the transportation problem will 

now be considered:  

1. Unbalanced transportation problem. 

2. Maximization problem. 

3. Different production costs. 

4. No allocation in a particular cell/cells. 

5. Overtime production. 

 7.1. The unbalanced transportation problem 

 In the problems discussed so far, the total availability from all 

the origins was equal to the total demand at all the destinations 

i.e., 



                     m               n                      

                    Σ  ai  =     Σ  bj   . Such problems are called 

balanced transportation problems. 

       i =1         j = 1     

In many real life situations, however, the total availability may 

not be equal to the total demand. i.e., 

                     m               n                      

                    Σ  ai  ≠     Σ  bj   ; such problems are called 

unbalanced transportation problems. 

       i =1           j = 1     

In these problems either some available resources will remain 

unused or some requirements will remain unfilled. 

Since a feasible solution exists only for a balanced problem, it 

is necessary that the total availability be made equal to the total 

demand. If total capacity or availability is more than the 

demand and if there are no costs associated with the failure to 

use the excess capacity, we add a dummy (fictitious) 

destination to take up the excess capacity and the costs of 

shipping to this destination are set equal to zero. The zero cost 

cells are treated the same way as real cost cells and the problem 

is solved as a balanced problem. If there is, however, a cost 

associated with unused capacity (e.g., maintenance cost) and it 

is linear, it too can be easily treated. 

In case the total demand is more than the availability, we add a 

dummy origin (source) to “fill” the balance requirement and the 

shipping costs are again set to equal to zero. However, in real 

life, the cost of unfilled demand is seldom zero since it may 

involve lost sales, lesser profits, possibility of losing the 



customer or even business or the use of a more costly substitute. 

Solution of the problem under such situations may be more 

involved. 

 7.2. The maximization problem 

 The transportation problem may involve maximization of 

profit rather than minimization of cost. Such a problem may be 

solved in one of the following ways:  

1. As maximization of a function is equivalent to 

minimization of negative of that function, the given 

problem may be converted into a minimization 

problem by multiplying the profit matrix by – 1. 

Minimization of this negative profit matrix by the 

usual method will be equivalent to the maximization 

of the given problem.  

2. It may be converted into a minimization problem, 

by subtracting all the profits from the highest profit 

in the matrix. The problem can then be solved by 

the usual methods.  

3. It may be solved as a maximization problem itself. 

However, while finding the initial basic feasible 

solution, allocations are to be made in highest profit 

cells, rather than in lowest cost cells. Also solution 

will be optimal when all cell evaluations are non-

positive (≤ 0).  

7.3. Different production costs 

In some industries a particular product may be manufactured 

and transported from different production locations. The 

production cost could be different in different units due to 

various reasons, like higher labour cost, higher cost of 



transportation of raw materials, higher overhead charges, etc. 

Under this situation the production cost is added to the 

transportation cost while finding the optimal solution.  While 

solving the transportation problems, if the variable production 

costs and the fixed costs are given for various production 

plants, no consideration is given for the fixed cost.  

7.4. No allocation in particular cell/cells 

In the transportation of goods from sources to the destinations, 

some routes may be banned, blocked, affected by flood, etc. To 

avoid allocations in a particular cell/ cells, a heavy penalty cost 

is assigned to the cells/ cell and the problem is solved in the 

usual manner.  

7.5. Overtime production 

In the production units, overtime production is taken up to 

increase the production. This will add the cost of production 

due to the higher wages paid to the employees involved in 

overtime. Such wages paid also included in the transportation 

cooperation. 
 
Methods For Initial Basic Feasible Solutions  
 

1. Northwest corner method 
2. Least cost method 
3. Vogel’s approximation method (or Penalty method) 

 
Steps for North-West Corner Method 
 

1. Allocate the maximum amount allowable by the supply 
and demand constraints to the variable x11 (i.e. the cell in 
the top left corner of the transportation tableau). 



2. If a column (or row) is satisfied, cross it out. The 
remaining decision variables in that column (or row) are 
non-basic and are set equal to zero. If a row and column 
are satisfied simultaneously, cross only one out (it does 
not matter which). 

3. Adjust supply and demand for the non-crossed out rows 
and columns. 

4. Allocate the maximum feasible amount to the first 
available non-crossed out element in the next column (or 
row). 

5. When exactly one row or column is left, all the remaining 
variables are basic and are assigned the only feasible 
allocation 
 
Steps for Least Cost Method 
 

1. Assign as much as possible to the cell with the smallest 
unit cost in the entire tableau. If there is a tie then choose 
arbitrarily. 

2. Cross out the row or column which has satisfied supply or 
demand. If a row and column are both satisfied then cross 
out only one of them. 

3. Adjust the supply and demand for those rows and 
columns which are not crossed out. 

4. When exactly one row or column is left, all the remaining 
variables are basic and are assigned the only feasible 
allocation 
 
Steps for Vogel’s Approximation Method 
 
1.Determine a penalty cost for each row (column) by 
subtracting the lowest unit cell cost in the row (column) 



from the next lowest unit cell cost in the same row 
(column). 
 
2.Identify the row or column with the greatest penalty 
cost. Break the ties arbitrarily (if there are any). Allocate 
as much as possible to the variable with the lowest unit 
cost in the selected row or column. Adjust the supply and 
demand and cross out the row or column that is already 
satisfied. If a row and column are satisfied 
simultaneously, only cross out one of the two and allocate 
a supply or demand of zero to the one that remains. 

• If there is exactly one row or column left with a supply or 
demand of zero, stop. 

• If there is one row (column) left with a positive supply 
(demand), determine the basic variables in the row 
(column) using the Minimum Cell Cost Method. Stop. 

• If all of the rows and columns that were not crossed out 
have zero supply and demand (remaining), determine the 
basic zero variables using the Minimum Cell Cost 
Method. Stop. 

• In any other case, continue with Step 1. 
 


