Software Design o

. A .".b_\,.‘_
' t deals with transfor he
Design phase of software developmen 3 e -

customer requirements as d) Y 1A
form implementable using a programming language. In order to be

easily implementable in a conventiona'l programming language, the 4_

following items must be designed during the design phase: & ‘__f_'_'::

e Different modules required to implement the design solutim.-@_f-

o e . 5 5 4

e Control relationship among the identified modules, 1.e. the
call relationship (also known as the invocation relationship) among

modules.) o4 J o

e Interface among different modules, i.e. details of the data item '
exchanged among different modules. . ; :

* Data structures of the individual modules. i
* Algorithms required to implement the individual modules.

, Thus the goal of the design phase is to take the SRS docum
. as the input and to produce the above mlentioned items at t
o completion-stage of the design phase. A good software desigf_i_s-‘_ seld
- arrived through a single step procedure but goes through a seri
. steps. However, we can broadly classify various design activities inf

—L‘_i;we important %‘tsi) |
. * Preliminary (or high-level) design™ ~
* Detailed design, ok, J"-.:g,};-'
. the meaning and scope of these fap Y

; e two stages
ably _from‘_one methodology to another. We;“;ﬁ
that during high-level design, different modul
elé -f»..«_e"_ n among them are iden ified and th
! architecture

oL
.

ciart is used to represent th
0. However, other notation:
Warttier-Orr [1977, 1981) ¢

Scanned with

CamsScanner

. a

150 be used. Durmg detailed design, the data structure and the
Jgorithms US(‘d_ .b.Y d_lﬂ‘(‘-l‘ent modules are designed. The outcome of
the detailed design is usually known gg the module specification
: documont. g — L i
A 1;;1"g(‘ number of Software design techniques is available, We
 will provide a broad overview of these design approaches and discuss
~ {heir important Ch{ll'%}Ct@.l'lSt»iCS. Before discussing the different design
approm‘}}(‘s- let us discuss a fundnmental question—that of how to
. distinguish between a good design and a bad design. In order to do
_ this, we must be 3.1310 to define a get of criteria which characterize
aa a good software design. Beflause, unless we know what a good software
~ design 18, we cannot possibly design one. Also, as we will see, there
s no unique way to design a system. Using the same design
- methodology, different engineers can arrive at totally different design

* solutions. So it is essgntial that we know some ways of distinguishing
~ a good software design from a bad design.

. 4.1 WHAT IS A GOOD SOFTWARE DESIGN?

Judging the goodness of a design involves many subjective factors
which depend on the particular application. M@, an embedded

size of memory,
and therefore one may have to sacrifice design comprehensibility in

order to achieve compactness of code. Therefore, for embedded
-applications, factors like design comprehensibility may take a back
~ seat while judging the goodness of design. In other words, a design

- solution which can be judged good for one application may not be
considered good for another application, Not only the goodness of a
design but also the notion of goodness of a design varies widely
across software engineers and academicians. However, most
searchers and software engineers. agree that software design for

- general applications must have a few desirable chargcteristics. These
are listed below: e 3t

* A good design should capture all the functionalities of the
System correctly. 2 ‘T

* It should be \e.aaily_ nd

* It should be eﬂimantmi‘ -y Ly
* 1t should be easily am enabl e, i.e. easily maintainable.

.Understandéb;}lity'. L sa ar factor which is used to
aluate the goodne; i)

tremendous effort to
; tﬁﬂ%ofthe total

82 Fundamentals of Software Engineering

effort in the life cycle of a typical product is spent on maintenance
If the software is not easily understandable, the maintenance effgp
would increase manifold. In order to enhance the understandability
of a demgn, it should have the following features:

1 varmus
. Use of consistent and meaningful names fo design
components.

e Use of a cleanly decomposed set of mo
» Neat arrangement of modules in a hierarch

Modular design is one of the fundamental principles of a good

dules facilitates t
design. Decomposition of a problem into mo
advf:tage of the divide and congquer principle. If different modules

are almost independent of cach other then each module can be

understood separately, eventually reducing the complexity greatly,
; To understand why this is so, we know that it is very difficult to
i break a bunch of sticks tied together, but very easy to break the
4 sticks individually. Let us see how we can further elaborate the idea
I of a clean decomposition of a problem into modules and their
arrangement in a neat hierarchy.
4 | _ Clean decomposition of a design problem into modules means
s " that the modules in a s uld display high cohesion
W and low coupling. We will shortly introduce the concepts of coheswn

and coupling and discuss what these terms mean.
Neat arrangement of modules in a hierarchy essentially means

dules.
y, i.e. tree-like diagram,

e low fan-out, and

e abstraction

—

We will further elaborate these concepts in this chapter.

4.2 COHESION AND COUPLING s "

Most researchers and engineers agree that a good software

implies clean decomposition of a problem into modules, and !
_arrangement of these modules in a neat hierarchy. What do we
3 m_ean by clean decomposition of a problem into modules" The P i

Scaﬁned with CamScanner

Software Des;
. —— esign | 83

interaction with other modules, Function

e ! al independence is a key t,
goodﬁé51gn primarily due to the fol o ependence is a key to

ng reasons:

ional in
‘ Fu;icitstin i gﬁpendgnce I‘Educes&l ror propagation. There
an error € g e module does not, directly affect other moc

and also any error existing in other modules doe

fore,
lules
s not directly affect

e Reuse of a module is possible, because each module performs
some well-defined apd precise function and the interface of the module
.~ with other modules is simple and minimal. Therefore any such module
~ can be easily taken out and reused in a different ,program.

: » Complexity of the design is reduced, because different modules
can be understood in isolation as modules are more or less independent
of each other.

Even though no quantitative measures are available to determine
the degree of cohesion and coupling, an understanding of different
kinds of cohesion and coupling will give us some idea regarding the
degree of cohesiveness of a module. Therefore, by examining the
type of cohesiveness exhibited by a module, we can roughly tell whether |
it displays high or low cohesion.

Logical Tenipgral, | Procedural | Communi- | Sequen- | Func-
' : | cational tial tional

Fak (% i J ? J il :
m > ‘ T.f-/‘_:.:,. .,.A‘J‘;-_f"»' S - . “ ",‘i - W . 1 % High
Fig. 41 Classification of cohesion.

el AEs TS PG TN) & AL VA

#:3 R Fiwenft P
- 1

i\

| to have coincidental cohesion
it are related t6 each other ve

15 a random collection of
e functions have been put
jout any thought or desi

B

oincidental cohesion. A m
orins a set of ta:

‘95 " Fundamentals of Software Engineering

span, the module is said to_exhibit temporal cohesion. The set of
flnctions responsible for initialization, start-up, shut-down of the
me mcess, ete. exhibit temporal cohesion.

ey o 300y

Mﬁf cohesion. A module is said to possess procedural cohesion,
if the set of functions of the module are all part of a procedure

i) (ﬂﬂﬂ‘lthﬁl) in which a certain sequence of steps has to be carried out
"@#mn order for achlevmg an objective, e.g. the algorithm for

de ‘a message. g

+ %ﬁé;uhicaﬁonal cohesion. A module is said to have commumcatmml.
?,_"'u)hssion if all the functions of the module refer to or update tﬁeg

‘same data structure, e.g. the set of functions defined on an arra,ayl or
of ST

~ a stack. fo r*‘.
Sequential cohesion. A module is said to possess sequential cohm:m
if the elements of the module form different parts of a sequen

where output from one element of the sequence is input to the %
element of the sequence. B pi e e

Functional cohesion. Functional cohesion is said to exist if dif
elements of a module cooperate to achieve a smgle functw e
managing an employee’s payroll. When a module displays function
cohesion, and if we are asked to describe what the module do

can describe it using a single sentence. -
wye co s dndd seadswizados o brivrs Tl

ER

2.2 Classnflcahon of Couplmg

Scanned with CamScanner

Scanned with CamScanner

