Wﬂﬂmw A RISV RRATR AR, o AT 8) (S LA R

BCA lind Semestor/ ¢ Programming / 2014/ m 117

a verb in nature,

3. Parameterlist: when the function is called
for usage, there might be some data th
need to be carried over to perform the task
Soa parameter list is provided to hold datz;
passed in local variables of function. The

parameter list consist of fi
. s ormal paramete
Function body : It holds the st : .

form the task for which the functi

at

atements to per-
on is composed.
Function Prototype :

A fllﬂCllOll. prototype tells the compiler the name
of ﬂ‘? function, the type of data returned by the
function, the number of parameters the funition
expects to receive, the types of the parameters and
the Prder in which these parameters are expected

le'e any variable ina C program it is necess’ar};
fo write the prototype or declare a function before
its use. It informs the compiler that the function

would be referenced at a stage in the program, The

general form of function Prototype is :
Pt o
s n—name(); is afunction
prototype or declaration. Here void specifies that
this function does not returni any value, and the empty
parentheses indicate that it takes no parameters (ar-
guments). e

When we place the function prototype above all
the functions (including main()), it is known as a
global prototype. A prototype declared in global en-
vironment is available for all the functions in the
program.

When we place the function prototype inside the
definition of another function (i.e., in the local
declaration section), the prototype is known as a
local prototype. Stich declarations are primarily used
by the functions containing them.

It is a good programming style to have global pro-
totypes for adding flexibility and enhancing docu-
* mentation. Function prototypes are not mandatory
(compulsory) in C. These are desirable, however,
because these help in error checking between the
calls to a function and the corresponding function
definition. '

Example : intsum(inta, intb, intc);

Parameter Passing :

Parameter passing methods are the ways in which
parameters are transfered between functions when
one function calls another. Basically, C provides two
parameter passing methods- pass-by-value and

pass-by-reference.

Pass by Value :

In this type, value of actual arguments are passed
to the formal arguments and the operation is done
on the formal argument. Any change made in the
formal argument does not affect the actual argu-
ments because formal arguments are photocopy of
actual arguments.

Hence, when the function is called by the call by
value method, it does not effect the actual contents
of the actual arguments, Changes made in the for-
mal arguments are local to the block of the called
function. Once control returns back to the calling
function, the changes made vanish.

Important points regarding pass by value

mechanism : ‘
1. The actual arguments can be constants,

variables or expressions.
When the control is transferred from the calling -
function to the called function, the memory for
formal arguments and local variables is
allocated, values of the actual arguments are
substituted in the corresponding formal
arguments, and the statements in the function
body are executed.
As soon as the called function, finishes its
execution, the memory allocated for it is
deallocated i.e., the values of formal arguments
and local variables are destroyed, and finally
the control is transferred back to the calling
- function. '
4. Any change made to the formal arguments
- will have no effect on actual arguments, since -
the function will only be using the local copy
of the arguments. '

2.

/*Program to send values by Call by Value *
#include <stdio.h>
#include <conio.h>
void main()
{
int x, y;
change(int, int);
clrser(); s '
printf(“Enter values of X and Y”); -
scanf(“%d%d”, &x, &y);
change(x, y); ‘ :
printf(“\n In main() X =%d Y =%d”, X, ¥);
getch(); i | '
}

Scanned with CamScanner

BCA lind Semester / C Programming / 2014/ 1 118

change(int a, int b)

{
intk;

k=a;

a=b;

b=k;
printf(*\n In change() X = %d Y =%d", a, b);

}

Pass by Reference :
In pass by reference, the addresses of the actual
arguments is used in the function call. In this way
" the addresses of the actual arguments are passed
to the function. When control is transferred to the
called function, the addresses of the actual argu-
ments are substituted to corresponding formal ar-
guments and the body of the function is exceuted.
The formal arguments are declared as pointers to
types that match the data types of the actual argu-
ments. This approach is of practical importance
while passing arrays and structures among func-
* tions, and also for passing back more than one value

to the calling functions.

Important point regarding Pass by Reference

mechanism :

1. The actual arguments can only be variables.

2. When the control is transferred to the calling
function to the called function. the memory for
formal arguments and local variables is
allocated, addresses of the actual arguments
are substituted in the corresponding formal
arguments, and the statements in the function
body are executed.

~3. As soon as the called function finishes its
execution, the memory allocated for it is
deallocated i.e. the values of formal argument
and local variables are destroyed, and finally
the control is transferred back to the calling
function,

4. Any change made to the formal arguments
will have immediate effect on actual
arguments, since the function will be working
on actual arguments through pointers.

*Program to send a value by reference to the
"user-defined function ¥/
#include <stdio.h>
#include <conio >
void main()
{ intx,y, change(int *, int *);
chrser(),

printf(*\n Enter values of X and Y™),
scanf(“%d%d". &x, &y

Chﬂngc(&xv &y): - LI
printf(*\n In main() X = %d Y = %d" x, y);

getch():

change(int *a, int *b)
{
|

int *k:

*k = *a;

*a = *b;

*h = *k: "
printf(*\n In change() X=%d Y=%d", *a, *b),
return;

)

Q12(b). What do you know about bitwise
operation? Explain about some bitwise
operators by providing the examples for
each?

Ans. Bitwise operators :

[Please Refer to Q2 Unit-V, Page-67]

Q13(a). What are the commonly used in-
put functions in 'C'? Write their syntax and
explain the purpose of each?
Ans. Input functions used inC:

Input functions are the functions through which
data is entered into the computer. These functions
can feed the data from the standard input device
like keyboard to the computer. Input functions used
in C programming languages are

(i) getchar() : This function is used to input a
single character from the keyboard, This function
can only store character type data and no other
datatype can be stored through this function. This
function will echo the character on the screen while
inputting. This is buffered function. The general
syntax is as:

Example : char non;
mn = getchar();

(ii) getch() : This function is similar to the
getchar() function. But this function doesn’t echo
{hc character on the screen, It stores the character
in the computer’s memory. The general syntax is :

Example : v = getch(); ~

(iii) gets() : This function in C pmgramming Jan-
guage can input a complete character string from

Scanned with CamScanner

119
ks and specia

WW“.._- g

BCA (Ind Semester/ C Programming / 2014/ @

an include blan | character in the

the keyboard to the computer’s memory. This function ¢

string. Its syntax is :
Example : - char nm[80];
gets (nm);
(iv) scanf() : scanf() function can input
codes knows as control codes or format co
%d — integer data
_%f — float data
%If — long float data '
%Id — long integer '
%c — for single character A b
%s — // string of characters .
%u ~ unsigned integer etc.

function different

ata. To input data throu gh this
These codes are:

every type of d
of different types.

des are used to input data

Example :
char nm[15];
inta;
float b; :
scanf(“%s %d %f”, nm, &a, &b), is si
To read the string we don’t need to use ‘&’ (ampersand sign), whereas it is necessary to use this sign
with all other variables of other data types.
Q13(b). Define Auto and Register variables in the content of ‘C’. What is the basic
difference between these two variables? '
Ans: Auto Variables (Storage Class) : 3
It is the default storage class for all local variables. These are the most common. All the variables
lized to undefi

defined in a code block are auto by default. Auto variables are initia ned val.ue's until a valid
assignment (of that type). The keyword indicates that the variable can only be used within the current

block since the variable will be automatically created & destroyed as it is needed. This also means that

auto variables cannot be global.

Example :

void a (void)
{ .
int i; // equivalentto auto int i
o
Register storage class :
Register is used to define local variables that should be stored in a register instead of RAM. This means
ord) and cannot have the

equal to the register size (usually one w

that the variable has a maximum size
ave a memory location)

unary ‘&' operator applied to it (as it doesn’t h

Example :
ol
- register int miles;
b | _ |
Register should only be used for variables that require quick access such as counters. It should
an that the variable will be stored ina register. It mean

noted that defining *register” does not me
might be stored in a register depending upon hardware and implementation restrictions.

also be
sthat it

Scanned with CamScanner

