College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Unit 5
 COMBINATIONAL CIRCUITS-1
 (Adder, Subtractor)

Combinational circuits

- So far we've only worked with combinational circuits, where applying the same inputs always produces the same outputs.
- This corresponds to a mathematical function, where every input has a single, unique output.
- In programming terminology, combinational circuits are similar to "functional programs" that do not contain variables and assignments.
- Such circuits are comparatively easy to design and analyze.
- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, $1+1$ = 10 and you have to carry!

Adder

- Design an Adder for 1-bit numbers?
- 1. Specification:

2 inputs (X,Y)
2 outputs (C,S)

Adder

- Design an Adder for 1-bit numbers?
- 1. Specification:

2 inputs (X,Y)
2 outputs (C,S)

- 2. Formulation:

\mathbf{X}	\mathbf{Y}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Adder

- Design an Adder for 1-bit numbers?
- 1. Specification:

3. Optimization/Circuit

2 inputs (X,Y)
2 outputs (C,S)

- 2. Formulation:

\mathbf{X}	\mathbf{Y}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

- This adder is called a Half Adder
- Q:Why?

\mathbf{X}	\mathbf{Y}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

- A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit
- A truth table and sum of minterm equations for C and S are shown below.

$$
0+1+1=10 \longrightarrow \begin{array}{|lll|ll|}
\hline X & Y & Z & C & S \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} \quad \quad \begin{aligned}
& \\
& C(X, Y, Z)=\sum m(3,5,6,7) \\
& S(X, Y, Z)=\sum m(1,2,4,7)
\end{aligned}
$$

Full Adder

- A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{C}	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum

Carry

Full Adder $=2$ Half Adders

Manipulating the Equations:

$$
\begin{aligned}
& \mathrm{S}=\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z} \\
& \mathrm{C}=\mathrm{XY}+\mathrm{XZ}+\mathrm{YZ}
\end{aligned}
$$

Full Adder $=2$ Half Adders

Manipulating the Equations:

$$
\begin{aligned}
S & =(X \oplus Y) \oplus Z \\
C & =X Y+X Z+Y Z \\
& =X Y+X Y Z+X Y^{\prime} Z+X^{\prime} Y Z+X Y Z \\
& =X Y(1+Z)+Z\left(X Y^{\prime}+X^{\prime} Y\right) \\
& =X Y+Z(X \oplus Y)
\end{aligned}
$$

Full Adder $=2$ Half Adders

Manipulating the Equations:

$$
\begin{aligned}
& \mathrm{S}=(\mathrm{X} \oplus \mathrm{Y}) \oplus \mathrm{Z} \\
& \mathrm{C}=\mathrm{XY}+\mathrm{XZ}+\mathrm{YZ}=\mathrm{XY}+\mathrm{Z}(\mathrm{X} \oplus \mathrm{Y})
\end{aligned}
$$

Bigger Adders

- How to build an adder for n -bit numbers?
- Example: 4-Bit Adder
- Inputs?
- Outputs?
- What is the size of the truth table?
- How many functions to optimize?

Bigger Adders

- How to build an adder for n-bit numbers?
- Example: 4-Bit Adder
- Inputs? 9 inputs
- Outputs? 5 outputs
- What is the size of the truth table? 512 rows!
- How many functions to optimize? 5 functions

Binary Parallel Adder

- To add n-bit numbers:
- Use n Full-Adders in parallel
- The carries propagates as in addition by hand
- Use Z in the circuit as a $\mathrm{C}_{\text {in }}$
-

$$
\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
\hline & 0 & 1 & 1
\end{array}
$$

Binary Parallel Adder

- To add n-bit numbers:
- Use n Full-Adders in parallel
- The carries propagates as in addition by hand

This adder is called ripple carry adder

Subtraction (2's Complement)

- How to build a subtractor using 2's complement?

Subtraction (2's Complement)

- How to build a subtractor using 2's complement?

Src: Mano's Book

$$
S=A+(-B)
$$

Adder/Subtractor

- How to build a circuit that performs both addition and subtraction?

Adder/Subtractor

Using full adders and XOR we can build an Adder/Subtractor!
Ahmad Almulhem, KFUPM 2009

Binary Parallel Adder (Again)

- To add n-bit numbers:
- Use n Full-Adders in parallel
- The carries propagates as in addition by hand

This adder is called ripple carry adder

Carry Look Ahead Adder

- How to reduce propagation delay of ripple carry adders?
- Carry look ahead adder: All carries are computed as a function of C_{0} (independent of n !)
- It works on the following standard principles:
- A carry bit is generated when both input bits Ai and Bi are 1 , or
- When one of input bits is 1 , and a carry in bit exists

