DeMorgan's Theorems

Handout

Dr. Pang

DeMorgan's Theorems

DeMorgan's Theorems are two additional simplification techniques that can be used to simplify Boolean expressions. Again, the simpler the Boolean expression, the simpler the resulting logic.

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

DeMorgan's Theorem #1

$\overline{A \cdot B} = \overline{A} + \overline{B}$

The truth-tables are equal; therefore, the Boolean equations must be equal.

DeMorgan's Theorem #2

$\overline{A + B} = \overline{A} \cdot \overline{B}$

4

Summary

Boolean & DeMorgan's Theorems

DeMorgan Shortcut

BREAK THE LINE, CHANGE THE SIGN

Break the <u>LINE</u> over the two variables, and change the <u>SIGN</u> directly under the line.

For Theorem #14A, break the line, and change the AND function to an OR function. Be sure to keep the lines over the variables.

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

For Theorem #14B, break the line, and change the OR function to an AND function. Be sure to keep the lines over the variables.

Example

Simplify the following Boolean expression and note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

Example

Simplify the following Boolean expression and note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.

$$\overline{F}_{I} = \overline{(\overline{X \cdot \overline{Y}}) \cdot (\overline{Y} + Z)}$$

Solution

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})\cdot(\overline{\mathsf{Y}}+\mathsf{Z})$$

$$F_{I} = (\overline{\overline{X} \cdot \overline{Y}}) + (\overline{\overline{Y} + Z})$$
; Theorem #14A

 $\mathsf{F}_{_{1}} = (\mathsf{X} \cdot \overline{\mathsf{Y}}) + (\overline{\overline{\mathsf{Y}}} \cdot \overline{\mathsf{Z}}) \quad \text{; Theorem #9 \& #14B}$

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})+(\mathsf{Y}\cdot\overline{\mathsf{Z}})$$

; Theorem #9

 $F_1 = X\overline{Y} + Y\overline{Z}$

; Rewritten without AND symbols and parentheses

So, where would such an odd Boolean expression come from? Take a look at the VERY poorly designed logic circuit shown below. If you were to analyze this circuit to determine the output function F_2 , you would obtain the results shown.

Example

Simplify the output function F_2 . Be sure to note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.

Solution

$$F_{2} = \overline{(\overline{X} + Z)(\overline{XY})}$$

$$F_{2} = (\overline{\overline{X} + Z}) + (\overline{\overline{XY}}) ; \text{Theorem #14A}$$

$$F_{2} = (\overline{\overline{X} + Z}) + (XY) ; \text{Theorem #9}$$

$$F_{2} = (\overline{\overline{X} + Z}) + (XY) ; \text{Theorem #14B}$$

$$F_{2} = (\overline{\overline{X} + Z}) + (XY) ; \text{Theorem #14B}$$

$$F_{2} = (\overline{\overline{X} + Z}) + (XY) ; \text{Theorem #9}$$

$$F_{2} = (\overline{\overline{X} + Z}) + (XY) ; \text{Theorem #9}$$

$$F_{2} = X\overline{Z} + XY ; \text{Rewritten witho}$$

; Rewritten without AND symbols