## Points Addressed in this Lecture

# Lecture 5: Logic Simplication \& Karnaugh Map 

Professor Peter Cheung
Department of EEE, Imperial College London
(Floyd 4.5-4.11)
(Tocci 4.1-4.5)

## Forms of Boolean Expressions

- Sum-of-products form (SOP)
- first the product (AND) terms are formed then these are summed (OR)
$\rightarrow$ - eg: ABC + DEF + GHI
- Product-of-sum form (POS)
- first the sum (OR) terms are formed then the products are taken (AND)
- eg: $(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{D}+\mathrm{E}+\mathrm{F})(\mathrm{G}+\mathrm{H}+\mathrm{I})$
- It is possible to convert between these two forms using Boolean algebra (DeMorgan's)


## Imperial College

London

## Canonical Form

- Canonical form is not efficient but sometimes useful in analysis and design
- In an expression in canonical form, every variable appears in every term

$$
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{CD}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C} \overline{\mathrm{D}}
$$

- note that the dot (meaning AND) is often omitted
- An SOP expression can be forced into canonical form by ANDing the incomplete terms with terms of the form $(X+\bar{X})$ where $X$ is the name of the missing variable
- eg:

$$
\begin{aligned}
f(A, B, C) & =A B+B C \\
& =A B(C+\bar{C})+(A+\bar{A}) B C \\
& =A B C+A B \bar{C}+A B C+\bar{A} B C \\
& =A B C+A B \bar{C}+\bar{A} B C
\end{aligned}
$$

- The product term in a canonical SOP expression is called a 'minterm'


## A Notation using Canonical Form

- Previous example:
- Construct the truth table for this function
- use a 0 when the variable is complemented, 1 otherwise

| $f(A, B, C)=A B C+A B \bar{C}+\bar{A} B C$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Row Number | A | B | C | f |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 0 |
| 3 | 0 | 1 | 1 | 1 |
| 4 | 1 | 0 | 0 | 0 |
| 5 | 1 | 0 | 1 | 0 |
| 6 | 1 | 1 | 0 | 1 |
| 7 | 1 | 1 | 1 | 1 |

- $f$ can be written as the sum of row numbers having TRUE minterms

$$
f=\sum(3,6,7)
$$

## Imperial College

London

## Simplifying Logic Circuits

- First obtain one expression for the circuit, then try to simplify.
- Example:

(a)

(b)
- Two methods for simplifying
- Algebraic method (use Boolean algebra theorems)
- Karnaugh mapping method (systematic, step-by-step approach)


## Imperial College

London
Method 1: Minimization by Boolean Algebra

- Make use of relationships and theorems to simplify Boolean Expressions
- perform algebraic manipulation resulting in a complexity reduction
- this method relies on your algebraic skill
-3 things to try
- a) Grouping
- Given

$$
A+A B+B C
$$

- write it as

$$
A(1+B)+B C
$$

- then apply

$$
\leftrightarrows \quad 1+B=1
$$

- Minimized form

$$
\Rightarrow \quad A+B C
$$

- b) Multiplication by redundant variables
- Multiplying by terms of the form $A+\bar{A}$ does not alter the logic
- Such multiplications by a variable missing from a term may enable minimization
- eg: $A B+A \bar{C}+B C=A B(C+\bar{C})+A \bar{C}+B C$

$$
\begin{aligned}
& =A B C+A B \bar{C}+A \bar{C}+B C \\
& =B C(1+A)+A \bar{C}(1+B) \\
& =B C+A \bar{C}
\end{aligned}
$$

## Imperial College

London

## Example of Logic Design

Design a logic circuit having 3 inputs, $A, B, C$ will have its output HIGH only when a majority of the inputs are HIGH.

Step 1 Set up the truth table

Step 2 Write the AND term for each case where the output is a 1 .

| A | B | C | x |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 |  |
| 0 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 1 | $\rightarrow \bar{A} B C$ |
| 1 | 0 | 0 | 0 |  |
| 1 | 0 | 1 | 1 | $\rightarrow A \bar{B} C$ |
| 1 | 1 | 0 | 1 | $\rightarrow A B \bar{C}$ |
| 1 | 1 | 1 | 1 | $\rightarrow A B C$ |

## Step 5 Implement the circuit

## Step 3 Write the SOP form the output

Step 4 Simplify the output expression

$$
\begin{aligned}
x & =\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
x & =\bar{A} B C+A B C+A \bar{B} C+A B C+A B \bar{C}+A B C \\
& =B C(\bar{A}+A)+A C(\bar{B}+B)+A B(\bar{C}+C) \\
& =B C+A C+A B
\end{aligned}
$$



## Minimization by Karnaugh Maps

- What is a Karnaugh map?
- 3 Variable Example:

- A grid of squares
- Each square represents one minterm
- eg: top-left represents $\bar{A} \cdot \bar{B} \cdot \bar{C}$, bottom-right represents A.B. $\bar{C}$
- The minterms are ordered according to Gray code
- only one variable changes between adjacent squares
- Squares on edges are considered adjacent to squares on opposite edges
- Karnaugh maps become clumsier to use with more than 4 variables


## Imperial College

London

- 4 Variable example

- The square marked? represents
$\bar{A} \cdot B \cdot \bar{C} \cdot D$
- The square marked ?? represents
- Note that they differ in only the C variable.


## Filling out a Karnaugh Map

- Write the Boolean expression in SOP form
- For each product term, write a 1 in all the squares which are included in the term, 0 elsewhere
- canonical form: one square
- one term missing: two adjacent squares
- two terms missing: 4 adjacent squares
- Eg:

$$
X=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$



## Imperial College <br> London

- Take out previous example (Slide 12)

| $A \backslash B C$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 |

the adjacent squares $A B C$ and $\bar{A} B C$ differ only in $A$

- hence they can be combined into just $B C$
- normally indicated by grouping the adjacent squares to be combined
- Adjacent Pairs
- The same idea extends to pairs of pairs


## Minimization Technique

- Minimization is done by spotting patterns of 1's and 0's
- Simple theorems are then used to simplify the Boolean description of the patterns
- Pairs of adjacent 1's
- remember that adjacent squares differ by only one variable
- hence the combination of 2 adjacent squares has the form

$$
P(A+\bar{A})
$$

- this can be simplified (from before) to just $P$


## Imperial College

London

$$
X=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

- "Cover" all the 1's with maximum grouping:


\[

\]

- The simplified Boolean equation is one that sums all the terms corresponding to each of the group:

$$
X=A C+B C+A B
$$

More Examples of grouping

$A B+\overline{C D}$
$B \bar{D}+A B C$

## More examples




(c)


E1.2 Digital Electronics I
5.22

## Imperial College

London

(a)

(b)

(c)

(e)

Imperial College
London


## Complete Simplification Process

1. Construct the K map and place 1 s and 0 s in the squares according to the truth table.
2. Group the isolated 1s which are not adjacent to any other 1s. (single loops)
3. Group any pair which contains a 1 adjacent to only one other 1. (double loops)
4. Group any octet even if it contains one or more 1 s that have already been grouped.
5. Group any quad that contains one or more 1 s that have not already been grouped, making sure to use the minimum number of groups.
6. Group any pairs necessary to include any 1 s that have not yet been grouped, making sure to use the minimum number of groups.
7. Form the OR sum of all the terms generated by each group.


## More "Don't Care" examples

"Don't care" conditions should be changed to either 0 or 1 to produce K-map looping that yields the simplest expression.

(a)

(b)

(c)

$$
X=B
$$




OPEN $=\bar{M} F_{1}+\bar{M} F_{3}+\overline{M F}{ }_{2}$


## Imperial College <br> London

## K Map Method Summary

-Compared to the algebraic method, the K-map process is a more orderly process requiring fewer steps and always producing a minimum expression.
-The minimum expression in generally is NOT unique.
-For the circuits with large numbers of inputs (larger than four), other more complex techniques are used.

## Imperial College

London

## Summary

- SOP and POS -useful forms of Boolean equations
- Design of a comb. Logic circuit
(1) construct its truth table, (2) convert it to a SOP, (3) simplify using Boolean algebra or K mapping, (4) implement
- K map: a graphical method for representing a circuit's truth table and generating a simplified expression
- "Don't cares" entries in K map can take on values of 1 or 0 . Therefore can be exploited to help simplification

