

Imperial College London

– An SOP expression can be forced into canonical form by ANDing the incomplete terms with terms of the form $(X + \overline{X})$ where X is the name of the missing variable

eg:
$$f(A, B, C) = AB + BC$$

 $= AB(C + \overline{C}) + (A + \overline{A})BC$
 $= ABC + AB\overline{C} + ABC + \overline{ABC}$
 $= ABC + AB\overline{C} + \overline{ABC}$

The product term in a canonical SOP expression is called a 'minterm'

E1.2 Digital Electronics I

Imperial College

Simplifying Logic Circuits

- First obtain one expression for the circuit, then try to simplify.
- Example:

- Two methods for simplifying
 - Algebraic method (use Boolean algebra theorems)
 - Karnaugh mapping method (systematic, step-by-step approach)

Imperial College

A Notation using Canonical Form

- Previous example:
- · Construct the truth table for this function
 - use a 0 when the variable is complemented, 1 otherwise

$f(A, B, C) = ABC + AB\overline{C} + \overline{A}BC$					
Row Number	Α	В	С	f	
0	0	0	0	0	
1	0	0	1	0	
2	0	1	0	0	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	0	
6	1	1	0	1	
7	1	1	1	1	

- f can be written as the sum of row numbers having TRUE minterms

 $f = \sum (3,6,7)$

E1.2 Digital Electronics I

Cot 2007

Imperial College London

Method 1: Minimization by Boolean Algebra

- Make use of relationships and theorems to simplify Boolean Expressions
 - perform algebraic manipulation resulting in a complexity reduction
 - this method relies on your algebraic skill
 - 3 things to try

Cot 2007

London	London
• a) Grouping - Given A + AB + BC - write it as A(1+B) + BC - then apply 1+B=1 - Minimized form A + AB + BC	 b) Multiplication by redundant variables Multiplying by terms of the form A + A does not alter the logic Such multiplications by a variable missing from a term may enable minimization eg: AB + AC + BC = AB(C + C) + AC + BC ⇒ = ABC + ABC + AC + BC = BC(1 + A) + AC(1 + B) = BC + AC
E1.2 Digital Electronics I Cot 2007	E1.2 Digital Electronics I Cot 2007
 c) Application of DeMorgan's Theorem Expressions containing several inversions stacked one upon the other may often by simplified by applying DeMorgan's Theorem. 	Example of Logic Design Design a logic circuit having 3 inputs, A, B, C will have its output HIGH only when a majority of the inputs are HIGH.
- DeMorgan's Theorem "unwraps" the multiple inversion - eg: $\overline{A\overline{B}C} + \overline{ACD} + B\overline{C} = \overline{(\overline{A} + B + \overline{C}) + (\overline{A} + \overline{C} + \overline{D}) + B\overline{C}}$ $= \overline{(\overline{A} + B + \overline{C} + \overline{D}) + B\overline{C}}$ $= \overline{(\overline{A} + B + \overline{C} + \overline{D})}$ $= A\overline{B}CD$	Step 1Set up the truth table $A B C x$ $0 0 0 0$ $0 0 0$ $0 0 1 0$ $0 1 0$ $0 1 0 0$ $0 1 0 0$ $0 1 1 1$ $0 0 0$ $0 1 1 1$ $0 0 0$ $1 0 0 0$ $0 0 0$ $1 0 1 1$ $0 0 0$ $1 0 1 1$ $0 0 0$ $1 0 1 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $1 1 0 1$ $0 0 0$ $0 0 0$ $0 0$ 0

Imperial College London Step 3 Write the SOP form the output

Step 4 Simplify the output expression

$$x = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

$$x = \overline{ABC} + ABC + A\overline{BC} + \overline{ABC} + AB\overline{C} + AB\overline{C}$$

$$= BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$= BC + AC + AB$$

Imperial College London

Step 5 Implement the circuit

E1.2 Digital Electronics I	5.13	Cot 2007	E1.2 Digital Electronics I	5	.14				Cot 2007
 What is a Karnaugh map 3 Variable Example: A\BC 0 0 1 A grid of squares Each square represents eg: top-left represents only one variable chart Squares on edges are or edges 	0 01 11 10	on opposite	Imperial College London - 4 Variable example AB\CD 00 01 11 10 - The square marked - The square marked - The square marked - Note that they differ	0 00	resent	s	\overline{A} .	B.C.D B.C.D	

Filling out a Karnaugh Map

- Write the Boolean expression in SOP form
- For each product term, write a 1 in all the squares which are included in the term, 0 elsewhere
 - canonical form: one square
 - one term missing: two adjacent squares
 - two terms missing: 4 adjacent squares
- Eg:

Imperial College London

Minimization Technique

- Minimization is done by spotting patterns of 1's and 0's
- Simple theorems are then used to simplify the Boolean description of the patterns
- Pairs of adjacent 1's
 - remember that adjacent squares differ by only one variable
 - hence the combination of 2 adjacent squares has the form

 $P(A + \overline{A})$

- this can be simplified (from before) to just P

E1.2 Digital Electronics I	Cot 2007	E1.2 Digital Electronics I	Cot 2007
Imperial College London		Imperial College London	
• Take out previous example (Slide 12) A\BC 00 01 11 10 0 0 0 1 0 1 0 1 1 1 10		$X = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ • "Cover" all the 1's with maximum grouping: $A \setminus BC 00 01 11 10$ $0 0 0 1 0$ $1 0 0 1 0$	
 the adjacent squares ABC and ABC differ only in A hence they can be combined into just BC normally indicated by grouping the adjacent squares to be combined Adjacent Pairs The same idea extends to pairs of pairs 		 The simplified Boolean equation is one that sums all the terr corresponding to each of the group: X = AC + BC + AB 	ns

5.24

Imperial College London

Don't Care Conditions

- In certain cases some of the minterms may never occur or it may not matter what happens if they do
 - In such cases we fill in the Karnaugh map with and X
 - meaning don't care
 - When minimizing an X is like a "joker"
 - X can be 0 or 1 whatever helps best with the minimization

10

Х

- simplifies to B if X is assumed 1

X = B

Imperial College

expression.

London

More "Don't Care" examples

"Don't care" conditions should be changed to either 0 or 1

to produce K-map looping that yields the simplest

