
5: CPU-Scheduling 1

Jerry Breecher

OPERATING SYSTEMS

SCHEDULING

5: CPU-Scheduling 2

What Is In This Chapter?

• This chapter is about how to get a process attached to a processor.

• It centers around efficient algorithms that perform well.

• The design of a scheduler is concerned with making sure all users get
their fair share of the resources.

CPU Scheduling

5: CPU-Scheduling 3

What Is In This Chapter?

• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Multiple-Processor Scheduling
• Real-Time Scheduling
• Thread Scheduling
• Operating Systems Examples
• Java Thread Scheduling
• Algorithm Evaluation

CPU Scheduling

5: CPU-Scheduling 4

CPU SCHEDULING Scheduling
Concepts

Multiprogramming A number of programs can be in
memory at the same time. Allows
overlap of CPU and I/O.

Jobs (batch) are programs that run
without user interaction.

User (time shared) are programs that
may have user interaction.

Process is the common name for both.

CPU - I/O burst cycle Characterizes process execution,
which alternates, between CPU and
I/O activity. CPU times are
generally much shorter than I/O
times.

Preemptive Scheduling An interrupt causes currently
running process to give up the CPU
and be replaced by another process.

5: CPU-Scheduling 5

CPU SCHEDULING The Scheduler

� Selects from among the processes in memory that are ready to execute, and
allocates the CPU to one of them

� CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

� Scheduling under 1 and 4 is nonpreemptive

� All other scheduling is preemptive

5: CPU-Scheduling 6

CPU SCHEDULING The Dispatcher

� Dispatcher module gives control of the CPU to the process selected by the short-
term scheduler; this involves:

�switching context

�switching to user mode

�jumping to the proper location in the user program to restart that program

� Dispatch latency – time it takes for the dispatcher to stop one process and start
another running

5: CPU-Scheduling 7

Note usage of the words DEVICE, SYSTEM, REQUEST, JOB.

UTILIZATION The fraction of time a device is in use. (ratio of in-use time / total
observation time)

THROUGHPUT The number of job completions in a period of time. (jobs / second)

SERVICE TIME The time required by a device to handle a request. (seconds)

QUEUEING TIME Time on a queue waiting for service from the device. (seconds)

RESIDENCE TIME The time spent by a request at a device.
RESIDENCE TIME = SERVICE TIME + QUEUEING TIME.

RESPONSE TIME Time used by a system to respond to a User Job. (seconds)

THINK TIME The time spent by the user of an interactive system to figure out the next
request. (seconds)

The goal is to optimize both the average and the amount of variation. (but beware the ogre
predictability.)

CPU SCHEDULING
Criteria For

Performance
Evaluation

5: CPU-Scheduling 8

Most Processes Don’t Use Up Their Scheduling Quantum!

CPU SCHEDULING
Scheduling
Behavior

5: CPU-Scheduling 9

FIRST-COME, FIRST SERVED:

• (FCFS) same as FIFO
• Simple, fair, but poor performance. Average queueing time may be long.
• What are the average queueing and residence times for this scenario?
• How do average queueing and residence times depend on ordering of these

processes in the queue?

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 10

EXAMPLE DATA:
Process Arrival Service

Time Time
1 0 8
2 1 4
3 2 9
4 3 5

0 8 12 21 26

P1 P2 P3 P4

FCFS

Average wait = ((8-0) + (12-1) + (21-2) + (26-3))/4 = 61/4 = 15.25

CPU SCHEDULING Scheduling
Algorithms

Residence Time
at the CPU

5: CPU-Scheduling 11

SHORTEST JOB FIRST:

• Optimal for minimizing queueing time, but impossible to implement.
Tries to predict the process to schedule based on previous history.

• Predicting the time the process will use on its next schedule:

t(n+1) = w * t(n) + (1 - w) * T(n)

Here: t(n+1) is time of next burst.

t(n) is time of current burst.

T(n) is average of all previous bursts .

W is a weighting factor emphasizing current or previous bursts.

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 12

PREEMPTIVE ALGORITHMS:

• Yank the CPU away from the currently executing process when a higher
priority process is ready.

• Can be applied to both Shortest Job First or to Priority scheduling.

• Avoids "hogging" of the CPU

• On time sharing machines, this type of scheme is required because the
CPU must be protected from a run-away low priority process.

• Give short jobs a higher priority – perceived response time is thus
better.

• What are average queueing and residence times? Compare with FCFS.

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 13

EXAMPLE DATA:
Process Arrival Service

Time Time
1 0 8
2 1 4
3 2 9
4 3 5

0 5 10 17 26

P2 P4 P1 P3

Preemptive Shortest Job First

Average wait = ((5-1) + (10-3) + (17-0) + (26-2))/4 = 52/4 = 13.0

P1

1

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 14

PRIORITY BASED SCHEDULING:

• Assign each process a priority. Schedule highest priority first. All processes within
same priority are FCFS.

• Priority may be determined by user or by some default mechanism. The system
may determine the priority based on memory requirements, time limits, or other
resource usage.

• Starvation occurs if a low priority process never runs. Solution: build aging into a
variable priority.

• Delicate balance between giving favorable response for interactive jobs, but not
starving batch jobs.

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 15

ROUND ROBIN:
• Use a timer to cause an interrupt after a predetermined time. Preempts if task

exceeds it’s quantum.

• Train of events
Dispatch
Time slice occurs OR process suspends on event
Put process on some queue and dispatch next

• Use numbers in last example to find queueing and residence times. (Use
quantum = 4 sec.)

• Definitions:
– Context Switch Changing the processor from running one task

(or process) to another. Implies changing memory.
– Processor Sharing Use of a small quantum such that each process

runs frequently at speed 1/n.
– Reschedule latency How long it takes from when a process requests

to run, until it finally gets control of the CPU.

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 16

ROUND ROBIN:

• Choosing a time quantum

– Too short - inordinate fraction of the time is spent in context switches.

– Too long - reschedule latency is too great. If many processes want
the CPU, then it's a long time before a particular process can get the
CPU. This then acts like FCFS.

– Adjust so most processes won't use their slice. As processors have
become faster, this is less of an issue.

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 17

EXAMPLE DATA:
Process Arrival Service

Time Time
1 0 8
2 1 4
3 2 9
4 3 5

0 8 12 16 26

P2 P3 P4 P1

Round Robin, quantum = 4, no priority-based preemption

Average wait = ((20-0) + (8-1) + (26-2) + (25-3))/4 = 74/4 = 18.5

P1

4

P3 P4

20 24 25

P3

CPU SCHEDULING Scheduling
Algorithms

Note:
Example violates rules for
quantum size since most

processes don’t finish in one
quantum.

5: CPU-Scheduling 18

MULTI-LEVEL QUEUES:

• Each queue has its scheduling algorithm.
• Then some other algorithm (perhaps priority based) arbitrates between queues.
• Can use feedback to move between queues
• Method is complex but flexible.
• For example, could separate system processes, interactive, batch, favored, unfavored

processes

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 19

Here’s how the priorities are used in Windows

CPU SCHEDULING Using Priorities

5: CPU-Scheduling 20

MULTIPLE PROCESSOR SCHEDULING:

• Different rules for homogeneous or heterogeneous processors.

• Load sharing in the distribution of work, such that all processors have an
equal amount to do.

• Each processor can schedule from a common ready queue (equal
machines) OR can use a master slave arrangement.

Real Time Scheduling:
• Hard real-time systems – required to complete a critical task within a

guaranteed amount of time.

• Soft real-time computing – requires that critical processes receive priority
over less fortunate ones.

CPU SCHEDULING Scheduling
Algorithms

5: CPU-Scheduling 21

Two algorithms: time-sharing and real-time
• Time-sharing

– Prioritized credit-based – process with most credits is scheduled next
– Credit subtracted when timer interrupt occurs
– When credit = 0, another process chosen
– When all processes have credit = 0, recrediting occurs

• Based on factors including priority and history
• Real-time

– Soft real-time
– Posix.1b compliant – two classes

• FCFS and RR
• Highest priority process runs first

CPU SCHEDULING Linux Scheduling

5: CPU-Scheduling 22

How do we decide which algorithm is best for a particular environment?

• Deterministic modeling – takes a particular predetermined workload and defines
the performance of each algorithm for that workload.

• Queueing models.

CPU SCHEDULING Algorithm Evaluation

5: CPU-Scheduling 23

We’ve looked at a number of different scheduling algorithms.

Which one works the best is application dependent.

General purpose OS will use priority based, round robin, preemptive

Real Time OS will use priority, no preemption.

CPU SCHEDULING
WRAPUP

