J.S(P.G)COLLEGE SIKANDRABAD M.COM-4TH SEMESTER SUBJECT- OPERATIONS RESEARCH

TOPIC: Vogel's Approximation Method

Vogel's Approximation Method (VAM) or penalty method

This method is preferred over the NWCM and VAM, because the initial basic feasible solution obtained by this method is either optimal solution or very nearer to the optimal solution.

Vogel's	Vogel's Approximation Method (VAM) Steps (Rule)							
Step-1:	Find the cells having smallest and next to smallest cost in each row and write the difference (called penalty) along the side of the table in row penalty.							
Step-2:	Find the cells having smallest and next to smallest cost in each column and write the difference (called penalty) along the side of the table in each column penalty.							
Step-3:	Select the row or column with the maximum penalty and find cell that has least cost in selected row or column. Allocate as much as possible in this cell. If there is a tie in the values of penalties then select the cell where maximum allocation can be possible							
Step-4:	Adjust the supply & demand and cross out (strike out) the satisfied row or column.							
Step-5:	Repeact this steps until all supply and demand values are 0.							

Example-1 1. Find Solution using Voggel's Approximation method

	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
Demand	5	8	7	14	

SOLUTION:

TOTAL number of supply constraints : 3 TOTAL number of demand constraints : 4 Problem Table is

	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
<i>S</i> 3	40	8	70	20	18
Demand	5	8	7	14	

Table-1

	D1	D2	D3	D4	Supply	Row Penalty
S1	19	30	50	10	7	9=19-10
\$2	70	30	40	60	9	10=40-30
<i>S</i> 3	40	8	70	20	18	12=20-8
Demand	5	8	7	14		
Column Penalty	21=40-19	22=30-8	10=50-40	10=20-10		

The maximum penalty, 22, occurs in column D2.

The minimum *cij* in this column is $c_{32} = 8$.

The maximum allocation in this cell is min(18,8) = 8. It satisfy demand of *D*₂ and adjust the supply of *S*₃ from 18 to 10 (18 - 8 = 10).

Table-2

	D1	D2	D3	D4	Supply	Row Penalty
S1	19	30	50	10	7	9=19-10
S2	70	30	40	60	9	20=60-40
<i>S</i> 3	40	8 <mark>(8)</mark>	70	20	10	20=40-20
Demand	5	0	7	14		
Column Penalty	21=40-19		10=50-40	10=20-10		

The maximum penalty, 21, occurs in column D1.

The minimum *cij* in this column is $c_{11} = 19$.

The maximum allocation in this cell is min(7,5) = 5. It satisfy demand of *D*1 and adjust the supply of *S*1 from 7 to 2 (7 - 5 = 2).

Table-3

	D1	D2	D3	D4	Supply	Row Penalty
\$1	19 <mark>(5)</mark>	30	50	10	2	40=50-10
\$2	70	30	40	60	9	20=60-40
<i>S</i> 3	40	8 <mark>(8)</mark>	70	20	10	50=70-20
Demand	0	0	7	14		
Column Penalty			10=50-40	10=20-10		

The maximum penalty, 50, occurs in row S3.

The minimum *cij* in this row is $c_{34} = 20$.

The maximum allocation in this cell is min(10,14) = 10. It satisfy supply of *S*₃ and adjust the demand of *D*₄ from 14 to 4 (14 - 10 = 4).

	D1	D2	D3	D4	Supply	Row Penalty
S1	19 <mark>(5)</mark>	30	50	10	2	40=50-10
S2	70	30	40	60	9	20=60-40
S 3	40	8 <mark>(8)</mark>	70	20 (10)	0	
Demand	0	0	7	4		
Column Penalty			10=50-40	50=60-10		

Table-4

The maximum penalty, 50, occurs in column D4.

The minimum *cij* in this column is $c_{14} = 10$.

The maximum allocation in this cell is min(2,4) = 2. It satisfy supply of *S*₁ and adjust the demand of *D*₄ from 4 to 2 (4 - 2 = 2

Table-5

	D1	D2	D3	D4	Supply	Row Penalty
<i>S</i> 1	19 <mark>(5)</mark>	30	50	10 <mark>(2)</mark>	0	
S2	70	30	40	60	9	20=60-40
S3	40	8 <mark>(8)</mark>	70	20 (10)	0	
Demand	0	0	7	2		
Column Penalty			40	60		

The maximum penalty, 60, occurs in column D4.

The minimum *cij* in this column is $c_{24} = 60$.

The maximum allocation in this cell is min(9,2) = 2. It satisfy demand of *D*4 and adjust the supply of *S*2 from 9 to 7 (9 - 2 = 7).

	D1	D2	D3	D4	Supply	Row Penalty
S1	19 <mark>(5)</mark>	30	50	10 <mark>(2)</mark>	0	
S2	70	30	40	60 <mark>(2)</mark>	7	40
S3	40	8 <mark>(8)</mark>	70	20 (10)	0	
Demand	0	0	7	0		
Column Penalty			40			

Table-6

The maximum penalty, 40, occurs in row S2.

The minimum *cij* in this row is $c_{23} = 40$.

The maximum allocation in this cell is min(7,7) = 7. It satisfy supply of S2 and demand of D3. Initial feasible solution is

	D1	D2	D3	D4	Supply	Row Penalty
S1	19 <mark>(5)</mark>	30	50	10 <mark>(2)</mark>	7	9 9 40 40
S2	70	30	40 (7)	60 <mark>(2)</mark>	9	10 20 20 20 20 40
<i>S</i> 3	40	8 <mark>(8)</mark>	70	20 (10)	18	12 20 50
Demand	5	8	7	14		
	21	22	10	10		
	21		10	10		
Column			10	10		
Penalty			10	50		
			40	60		
			40			

The minimum total transportation cost =19×5+10×2+40×7+60×2+8×8+20×10=779

Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6 \therefore This solution is non-degenerate