J.S(P.G)COLLEGE SIKANDRABAD M.COM-4 ${ }^{\text {TH }}$ SEMESTER

SUBJECT- OPERATIONS RESEARCH

TOPIC: Vogel's Approximation Method

Vogel's Approximation Method (VAM) or penalty method This method is preferred over the NWCM and VAM, because the initial basic feasible solution obtained by this method is either optimal solution or very nearer to the optimal solution.	
Vogel's Approximation Method (VAM) Steps (Rule)	
Step-1:	Find the cells having smallest and next to smallest cost in each row and write the difference (called penalty) along the side of the table in row penalty.
Step-2:	Find the cells having smallest and next to smallest cost in each column and write the difference (called penalty) along the side of the table in each column penalty.
Step-3:	Select the row or column with the maximum penalty and find cell that has least cost in selected row or column. Allocate as much as possible in this cell. If there is a tie in the values of penalties then select the cell where maximum allocation can be possible
Step-4:	Adjust the supply \& demand and cross out (strike out) the satisfied row or column.
Step-5:	Repeact this steps until all supply and demand values are 0.

Example-1

1. Find Solution using Voggel's Approximation method

	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
Demand	5	8	7	14	

SOLUTION:

TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is

	$D 1$	$D 2$	$D 3$	$D 4$	Supply
$S 1$	19	30	50	10	7
$S 2$	70	30	40	60	9
$S 3$	40	8	70	20	18
Demand	5	8	7	14	

Table-1

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	19	30	50	10	7	$9=19-10$
$S 2$	70	30	40	60	9	$10=40-30$
$S 3$	40	8	70	20	18	$12=20-8$
Demand	5	8	7	14		
Column Penalty	$21=40-19$	$22=30-8$	$10=50-40$	$10=20-10$		

The maximum penalty, 22 , occurs in column D2.
The minimum cij in this column is $c 32=8$.
The maximum allocation in this cell is $\min (18,8)=8$.
It satisfy demand of D2 and adjust the supply of $S 3$ from 18 to $10(18-8=10)$.
Table-2

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	19	30	50	10	7	$9=19-10$
$S 2$	70	30	40	60	9	$20=60-40$
$S 3$	40	$8(8)$	70	20	10	$20=40-20$
Demand	5	0	7	14		
Column Penalty	$21=40-19$	--	$10=50-40$	$10=20-10$		

The maximum penalty, 21 , occurs in column $D 1$.
The minimum $c_{i j}$ in this column is $c 11=19$.
The maximum allocation in this cell is $\min (7,5)=5$.
It satisfy demand of $D 1$ and adjust the supply of $S 1$ from 7 to $2(7-5=2)$.
Table-3

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	$19(5)$	30	50	10	2	$40=50-10$
$S 2$	70	30	40	60	9	$20=60-40$
$S 3$	40	$8(8)$	70	20	10	$50=70-20$
Demand	0	0	7	14		
Column Penalty	--	--	$10=50-40$	$10=20-10$		

The maximum penalty, 50, occurs in row $S 3$.

The minimum cij in this row is $c 34=20$.
The maximum allocation in this cell is $\min (10,14)=10$.
It satisfy supply of $S 3$ and adjust the demand of $D 4$ from 14 to $4(14-10=4)$.
Table-4

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	$19(5)$	30	50	10	2	$40=50-10$
$S 2$	70	30	40	60	9	$20=60-40$
$S 3$	40	$8(8)$	70	$20(10)$	0	--
Demand	0	0	7	4		
Column Penalty	--	--	$10=50-40$	$50=60-10$		

The maximum penalty, 50 , occurs in column D4.
The minimum $c_{i j}$ in this column is $c 14=10$.
The maximum allocation in this cell is $\min (2,4)=2$.
It satisfy supply of S1 and adjust the demand of D4 from 4 to $2(4-2=2$
Table-5

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	$19(5)$	30	50	$10(2)$	0	--
$S 2$	70	30	40	60	9	$20=60-40$
$S 3$	40	$8(8)$	70	$20(10)$	0	--
Demand	0	0	7	2		
Column Penalty	--	--	40	60		

The maximum penalty, 60, occurs in column D4.

The minimum $c i j$ in this column is $c 24=60$.

The maximum allocation in this cell is $\min (9,2)=2$.
It satisfy demand of $D 4$ and adjust the supply of $S 2$ from 9 to 7 (9-2 = 7).

Table-6

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	$19(5)$	30	50	$10(2)$	0	--
$S 2$	70	30	40	$60(2)$	7	40
$S 3$	40	$8(8)$	70	$20(10)$	0	--
Demand	0	0	7	0		
Column Penalty	--	--	40	--		

The maximum penalty, 40, occurs in row $S 2$.

The minimum $c i j$ in this row is $c 23=40$.

The maximum allocation in this cell is $\min (7,7)=7$.
It satisfy supply of $S 2$ and demand of $D 3$.

Initial feasible solution is

	$D 1$	$D 2$	$D 3$	$D 4$	Supply	Row Penalty
$S 1$	$19(5)$	30	50	$10(2)$	7	$9\|9\| 40\|40\|--\|-\|$
$S 2$	70	30	$40(7)$	$60(2)$	9	$10\|20\| 20\|20\| 20\|40\|$
$S 3$	40	$8(8)$	70	$20(10)$	18	$12\|20\| 50\|--\|--\|-\|$
Demand	5	8	7	14		
	21	22	10	10		
Column	21	--	10	10		
Penalty	--	--	10	10		
	--	--	40	50		
	--	--	40	--		

The minimum total transportation cost $=19 \times 5+10 \times 2+40 \times 7+60 \times 2+8 \times 8+20 \times 10=779$
Here, the number of allocated cells $=6$ is equal to $m+n-1=3+4-1=6$
\therefore This solution is non-degenerate

