
1 RSA Algorithm

1.1 Introduction

This algorithm is based on the difficulty of factorizing large numbers that
have 2 and only 2 factors (Prime numbers). The system works on a public
and private key system. The public key is made available to everyone. With
this key a user can encrypt data but cannot decrypt it, the only person who
can decrypt it is the one who possesses the private key. It is theoretically
possible but extremely difficult to generate the private key from the public
key, this makes the RSA algorithm a very popular choice in data encryption.

1.2 Algorithm

First of all, two large distinct prime numbers p and q must be generated. The
product of these, we call n is a component of the public key. It must be large
enough such that the numbers p and q cannot be extracted from it - 512 bits
at least i.e. numbers greater than 10154. We then generate the encryption
key e which must be co-prime to the number m = ϕ(n) = (p − 1)(q − 1).
We then create the decryption key d such that demod m = 1. We now have
both the public and private keys.

1.3 Encryption

We let y = E(x) be the encryption function where x is an integer and y is
the encrypted form of x
y = xe modn

1.4 Decryption

We let X = D(y) be the decryption function where y is an encrypted integer
and X is the decrypted form of y
X = yd modn

1.5 Simple Example

1. We start by selecting primes p = 3 and q = 11.

2. n = pq = 33
m = (p− 1)(q − 1) = (2)(10) = 20.

1

3. Try e = 3
gcd(3, 20) = 1
⇒ e is co-prime to n

4. Find d such that 1 ≡ demodm
⇒ 1 = Km + de
Using the extended Euclid Algorithm we see that 1 = −1(20) + 7(3)
⇒ d = 7

5. Now let’s say that we want to encrypt the number x = 9:
We use the Encryption function y = xe modn
y = 93 mod 33
y = 729 mod 33 ≡ 3
⇒ y = 3

6. To decrypt y we use the function X = yd modn
X = 37 mod 33
X = 2187 mod 33 ≡ 9
⇒ X = 9 = x
⇒ It Works!

2 Inplementing RSA Using Java

The first task is to generate the prime numbers p and q. This is done using
the BigInteger class in java. We must use BigInteger instead of the standard
int because an integer variable cannot exceed 231 − 1 while a BigInteger can
simulate arbitrary-precision integers. We can apply all the usual mathemat-
ical operations to BigInteger as well as others like mod ular arithmetic, gcd,
primality testing etc. When constructing a BigInteger we specify a bit-length
and the amount of times t, that we want the Miller-Rabin probabilistic test
(Below) to run on the BigInteger, as well as supplying a random set of bits for
these tests. This will generate a random integer which is probably prime with
the specified bit-length. The probability that the new BigInteger represents
a prime number will exceed (1− 1/4t).

From this we can easily generate n and m. The next step is to calculate
e which must be co-prime to m, i.e. gcd(e,m) = 1. We begin by letting
e = 3, if gcd(e,m) 6= 1 we let e be the next odd number. We continue in
this fashion until the gcd(e,m) = 1. The reason we only use odd numbers is
because m will always be even so therefore no even number will be co-prime
to m. The BigInteger class utilizes Euclid’s algorithm (Below) to calculate
gcd’s. We now have all the components of the public key.

2

We must now calculate d such that demod m = 1. BigInteger uses the
method mod Inverse to find d.
demodm = 1
⇒ 1− de = mk............where k is an integer
⇒ 1 = mK + de...........m & e are known.
This has a unique solution because m and e are co-prime - We made it so in
the last paragraph. This solution is got using the Extended Euclid Algorithm
(Below).

We now have all the information we require to encrypt integers. We use
the encryption function f(x) = y = xe mod n. BigInteger uses the method
mod Pow to calculate y.

2.1 Euclid’s Algorithm - Greatest Common Divisor

Public int gcd (int a, int b)
{

if (b = 0) return a;
else return gcd(b,a%b)

}
Example 1:
1. gcd(90,48)

b 6= 0 ⇒ gcd(48, 90mod 48)
2. gcd(48,42)

b 6= 0 ⇒ gcd(42, 48mod 42)
3. gcd(42,6)

b 6= 0 ⇒ gcd(6, 42mod 6)
4. gcd(6,0)

b = 0 ⇒ gcd(90,48) = 6

2.2 Extended Euclid’s Algorithm

Public int[] EE (int a, int b, int c, int d, int e, int f)
{

if (b = 0)
{

int [] ret = {0,0,0};
ret [0] = a; // gcd(a,b)
ret [1] = e; // coefficient of a
ret [2] = f; // coefficient of b
return ret;

3

}
else
{

return EE(b, a%b, e-(a/b)*c, f-(a/b)*d, c, d);
}

}
// N.B
// c and f must be initialized to 0 for algorithm to work
// d and e must be initialized to 1 for algorithm to work

Example 2:

We want to know what the gcd of 108 and 5 is and also we want
to find the integers x and y that satisfy 108x + 5y = gcd.
1. EE(108, 5, 0, 1, 1, 0)

b 6= 0 ⇒ EE(5, 108%5, 1-0, 0-21, 0, 1)
2. EE(5, 3, 1, -21, 0, 1)

b 6= 0 ⇒ EE(3, 5%3, 0-1, 1-(-21), 1, -21)
3. EE(3, 2, -1, 22, 1, -21)

b 6= 0 ⇒ EE(2, 3%2, 1-(-1), -21-22, -1, 22)
4. EE(2, 1, 2, -43, -1, 22)

b 6= 0 ⇒ EE(1, 2%1, -1-4, 22-(-86), -1, 22)
5. EE(1, 0, -5, 108, 2, -43)

b = 0 ⇒ ret = {1, 2, -43}

Therefore 1 = 2(108) - 43(5)

2.3 The Miller-Rabin Probabilistic Test

Given an integer x, we want to test in for primality we can apply the Miller-
Rabin probabilistic test. The algorithm is as follows:

1. A random number b is chosen from the set of integers [1, (n− 1)]

2. We must find q and the odd number m such that n− 1 = 2qm.

3. We then test if either of the following conditions hold:

(a) bm modx ≡ 1 OR

(b) If ∃ an integer i ∈ [0, (q − 1)] such that −1 ≡ bm2i
modx

4

4. If neither of the above conditions are satisfied
⇒ x is definitely composite.
However if either (a) or (b) are true
⇒ x is possibly prime(Inconclusive).

If we conduct k of these tests and all k tests are inconclusive
⇒ The probability of x being prime is (1− (1

4
)k).

However if any of these test fail
⇒ x is composite

2.3.1 Java Code For M-R Probabilistic test

import java.util.Random;
import java.math.BigInteger;
Public class mrpt
{

public int primeT(int p)
{

Random gen = new Random();
int b = gen.nextInt(p-1)+1;
int [] qandm = getqm(p);
int q =qandm[0];
int m =qandm[1];
BigInteger bval = new BigInteger((””+b));
BigInteger mval = new BigInteger((””+m));
BigInteger qval = new BigInteger((””+q));
BigInteger pval = new BigInteger((””+p));
BigInteger two = new BigInteger(”2”);
BigInteger pminusone = new BigInteger(””+(p-1));

if (q==-1)return 0;
if (bval.modPow(mval,pval).compareTo(BigInteger.ONE)==0)return 1;
int j = 0;
BigInteger indexval = mval;
while (j < q)
{

if (pminusone.compareTo(bval.modPow(indexval,pval))==0)return 1;
indexval = indexval.multiply(two);
j++;

5

}
return 0;

}

public int [] getqm(int p)
{

p = p-1;
int [] rt ={0,0}; // rt = {q, m}
if (p%2 != 0)
{

rt[0] = -1; rt[1] = -1;
return rt;

}
int divisor = p/2;
int count = 1;
double maxq = (Math.log(p))/(Math.log(2));
while (count <= maxq && divisor%2==0)
{

count++;
divisor = divisor/2;

}
rt[0] = count; rt[1] = divisor;
return rt;
}

}
}

Example 3:

We want to know if the integer x = 15 is prime.

1. B is chosen at random...lets say B = 8.

2. We then solve (15 - 1) = 2qm
⇒ m = 7 and q =1

3. (a) Is 87 mod 15 ≡ 1 ?
2097152 mod 15 ≡ 2
⇒ false

6

(b) Does an integer i ∈ [0, (q − 1)] exist such that
−1 = bm2i

modx.
In this case i = 0 is the only possibility but from
(a) we can see that 87.20

mod 15 ≡ −1 is false

⇒ x is composite.

Example 4:

We want to know if the integer x = 17 is prime.

1. B is chosen at random...lets say B = 3.

2. We then solve (17 - 1) = 2qm
⇒ m = 1 and q =4

3. (a) Is 31 mod 17 ≡ 1 ?
⇒ false

(b) Does an integer i ∈ [0, (q − 1)] exist such that
−1 = bm2i

modx.
for i = 0 : 31.20

mod 17 ≡ 3
for i = 1 : 31.21

mod 17 ≡ 9
for i = 2 : 31.22

mod 17 ≡ 13
for i = 3 : 31.23

mod 17 ≡ −1
⇒ true

⇒ x is possibly prime

3 Mathematics Of The RSA Algorithm

Given: n = pq where p and q are distinct primes.
gcd(e, ϕ(n)) = 1
de = 1 modϕ(n)
When y = xe modn and X = yd modn
where x < min{p, q}
Prove that : X = xmod n ∀ x < n

Proof: X = xde modn
de = 1 mod ϕ(n)
ϕ(n) = (p− 1)(q − 1) if p and q are distinct primes
de = 1 + k(p− 1)(q − 1)

7

X = x1+k(p−1)(q−1)

X = x.(x(p−1))k(q−1)

But x(p−1) = xϕ(p) and x ∈ Z∗
p

So x(p−1) = 1 mod p ...Fermat/Euler Theorem
So X = x.(1 mod p)k(q−1)

So X = xmod p
Similarly X = xmod q
Because p and q are co-prime we can use the Chinese remainder Theorem
Therefore X = xmod pq
⇒ X = xmod n

3.1 Fermat/Euler Theorem

Theorem ∀x ∈ Z∗
n, xϕ(n) ≡ 1 modn

Proof Zn = {1, 2...(n− 1)}modn
Z∗

n = {x ∈ Zn : gcd(x, n) = 1}
The order of Z∗

n is ϕ(n) and is called the Euler Function

We let u1,, uϕ(n) be an enumeration of all the elements of Z∗
n.

It is clear that x.u1,, x.uϕ(n) is also an enumeration of all the elements of Z∗
n.

Therefore x.u1...x.uϕ(n) = u1...uϕ(n)

So xϕ(n).u1...uϕ(n) = u1...uϕ(n)

We let g = u1...uϕ(n)

g ∈ Z∗
n ⇒ g−1 ∈ Z∗

n

So xϕ(n).u1...uϕ(n).g
−1 = u1...uϕ(n).g

−1

So xϕ(n) = 1 modn

3.2 Chinese Remainder Theorem

Theorem x = y mod p
x = y mod q
⇒ x = y mod pq

Proof x = y mod p
⇒ p|(x− y)
x = y mod q
⇒ q|(x− y)
p and q are co-prime
⇒ pq|(x− y)

8

⇒ x = y mod pq

3.3 Questions

1. Why must p and q be distinct?

If they are the same the above algorithm will fail. This is due to
the fact that ϕ(n) = (p− 1)(q − 1) if and only if p and q are distinct.
However if p = q ⇒ ϕ(n) = (p)(p− 1)

2. Why must x < min{p, q}?

Well, one step in the proof of RSA uses the Fermat/Euler Theorem, to
establish that xp−1 = 1(modp) For this to work, x must not equal p.
For the whole algorithm to work, x must also not equal q. So, while it
generally works for x < N , if you land on p or q by chance then it will
fail. To be on the safe side, it’s usually said that x < min{p, q}.

9

